
Obsidian in the Rough: A Case Study Evaluation of a
New Blockchain Programming Language

Paule�e Koronkevich
Carnegie Mellon University Indiana University

pkoronke@iu.edu

1 INTRODUCTION
Obsidian [2] is a typestate-oriented blockchain programming
language, designed in a user-centered way. A blockchain
is a decentralized, distributed ledger managed by a peer-
to-peer network [7]. Programs installed on the blockchain,
called smart contracts, maintain state which can be mutated
through transactions.

Blockchain programs are o�en oriented around states.
Obsidian uses typestate [1] to li� dynamic state to static
types, enabling the programmer to reason about protocols at
compile time. For example, an insurance Policy may be in
an Offered, Active, or Expired state, where a�empting to
purchase an active or expired policy results in a type error.

To enforce these protocols in the presence of aliasing,
Obsidian uses permissions [4] to reason about references
and their possible aliases. Obsidian has Owned, Shared, and
Unowned permissions. Owned references are guaranteed to
be the sole mutable reference to an object, with all aliases
being Unowned, or read-only, references. A reference with
a state speci�cation is Owned to ensure the speci�cation is
not violated. Owned references can be split into Shared refer-
ences, which are mutable but cannot guarantee typestate or
that there are no other Shared references. Shared references
follow the standard semantics of references in OO languages.
Unowned references cannot mutate the object.

�is paper describes a case study to evaluate Obsidian’s de-
sign. We implemented ParamSure, a blockchain application
for parametric insurance, to address the following questions:

• Can Obsidian express the protocol required using its
current features?

• Can Obsidian express the operation of the program
in a domain appropriate way?

Parametric insurance is a type of insurance that insures
against events outside the policyholder’s control. For ex-
ample, a farmer could buy parametric insurance to insure
crops against weather events that could damage them, such
as excessive rain. �e farmer receives compensation if the
event occurs, whether or not any damage occurred. In con-
trast, traditional insurance insures against pure loss, which
relies on trust between the insurer and the insured since an
insurance adjuster assesses the loss.

We also implemented a smaller prototype of ParamSure in
Solidity [5], another blockchain language, as a comparison.

Insurance Service
requestBid() requestBid()

InsuranceBid, $Policy

buy(Policy, $)

Client Insurer

Policy

refund($) (if expired)

claim(Policy)

$

Figure 1: Simpli�ed architecture of the case study.

We found Obsidian’s blend of typestate and permissions
useful for modeling and enforcing protocols.

2 RELATEDWORK
Obsidian builds on the typestate and permission systems
found in Plural [3] and Plaid [8]. Obsidian simpli�ed these
systems based on formative user studies to improve usability.
For example, Obsidian supports a single level of states per
object rather than hierarchical states. SILL [9] is a session-
typed functional language, and session types [6] are an alter-
native formalism for modeling protocols in communication-
based programming. Solidity [5] a statically-typed, contract-
oriented blockchain language.

3 METHODOLOGY
Our criteria for choosing the case study were as follows:
(1) the application should bene�t from being deployed on
the blockchain, (2) there should be an unbiased client to en-
force realism in the design, and (3) it should include features
found in other blockchain applications. We chose ParamSure
because it meets all of these criteria, as we will now describe.

�e World Bank is deploying a blockchain-based paramet-
ric insurance platform to provide agricultural insurance in
developing countries. ParamSure is our prototype of this
platform. We met with their team to elicit requirements for
our case study. We iteratively implemented a prototype of
ParamSure, con�rming that we were following the desired
structure. Since our client is responsible for the design, we
cannot handpick a structure that is a perfect �t for Obsidian,
which increases the realism of the case study.

Parametric insurance can bene�t from deployment on the
blockchain. Traditionally, the insured would need to trust

contract Policy {

enum States {Offered , Active , Expired}

States public currentState;

int public cost , expirationTime;

constructor (int c, int expTime) public {

cost = c;

expirationTime = expTime;

currentState = States.Offered;

}

function activate () public {

require(currentState == States.Offered);

currentState = States.Active;

cost = -1;

expirationTime = -1;

}

function expire () public {

require(currentState == States.Offered);

currentState = States.Expired;

cost = -1;

expirationTime = -1;

}

}

main contract Policy {

state Offered {

int cost;

int expirationTime;

}

state Active {}

state Expired {}

Policy@Offered(int c, int expTime) {

->Offered(cost = c, expirationTime = expTime);

}

transaction activate(Policy@Offered >> Active this) {

->Active;

}

transaction expire(Policy@Offered >> Expired this) {

->Expired;

}

}

Figure 2: Solidity implementation (le�) and Obsidian implementation (right) of a Policy contract.

that the insurer will pay claims when appropriate. By being
deployed on the blockchain, any terms such as compensation
can be automatically executed.

ParamSure also includes realistic features of blockchain
programs, such as several entities interacting with each other
and deploying contracts as shown in the simpli�ed architec-
ture in Figure 1.

4 RESULTS
We found that Obsidian’s typestate system can enforce cer-
tain protocols well at compile time. Many contracts used ref-
erences with typestate speci�cation, instead of using Shared
references and dynamic checks.

Figure 2 shows the implementation of a Policy contract
in Solidity and Obsidian. �is contract models the insurance
policy presented to the client in an Offered state. If the
Policy is purchased, it transitions to the Active state using
the activate() transaction. Otherwise, it eventually transi-
tions to the Expired state using the expire() transaction.

�e Solidity implementation requires dynamic checks to
ensure that the Policy is in the proper state, whereas Obsid-
ian simply requires that this must be in the Offered state
to invoke either activate() or expire(). Obsidian guar-
antees that a�er calling activate(), the Policy transitions
to the Active state, whereas Solidity cannot guarantee this.
If a user forgets to update the current state in Solidity, the
bug cannot be caught at compile time. Given a Policy, Ob-
sidian guarantees that it is Active a�er calling activate(),
whereas Solidity must repeatedly check, even a�er calling
activate(). Furthermore, Obsidian directly enforces that

�elds are only available in certain states, whereas Solidity
assigns these �elds to -1 as a sentinel value.

Obsidian’s permission system, though simple, can also
express powerful protocols. �e PolicyRecord contract has
an instance of a Policy. In Solidity, certain measures should
be taken to ensure the PolicyRecord cannot be manipulated
to maliciously update the state of the Policy, but in Obsidian
we simply make the reference Unowned.

However, we discovered that the Owned permission makes
accessing �elds from contracts di�cult. Obsidian currently
allows �elds to be incompatible with their declared type
during transactions, as long as the transaction restores the
declared type. Once accessed, the �eld is no longer Owned,
and thus incompatible with its declared type. We plan to
address this limitation in future designs of Obsidian.

We plan to create a similar implementation of ParamSure
in SILL [9] to provide further comparison. Our hypothesis
is that Obsidian is a be�er �t for the domain, based on the
general structure desired by the clients. �e implementation
in SILL would require reasoning about processes and chan-
nels that may not be clear to the client, whereas typestate
can model clearer protocols such as an expired policy.

5 CONCLUSION
Obsidian combines typestate and permissions in a novel way,
which we hypothesize can help programmers reason about
protocols at compile time. Obsidian seeks to provide these
guarantees in a usable way. We evaluated these features
through a case study. We found the case study useful for
uncovering di�culties with the current features.

2

REFERENCES
[1] Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks.

2009. Typestate-oriented Programming. In Proceedings of the 24th
ACM SIGPLAN Conference Companion on Object Oriented Programming
Systems Languages and Applications (OOPSLA ’09). ACM, New York,
NY, USA, 1015–1022. DOI:h�p://dx.doi.org/10.1145/1639950.1640073

[2] Celeste Barnaby, Michael Coblenz, Tyler Etzel, Eliezer Kanal, Joshua
Sunshine, Brad Myers, and Jonathan Aldrich. 2017. A User Study to
Inform the Design of the Obsidian Blockchain DSL. In PLATEAU ’17
Workshop on Evaluation and Usability of Programming Languages and
Tools.

[3] Kevin Bierho� and Jonathan Aldrich. 2008. PLURAL: Checking Pro-
tocol Compliance Under Aliasing. In Companion of the 30th Interna-
tional Conference on So�ware Engineering (ICSE Companion ’08). ACM,
New York, NY, USA, 971–972. DOI:h�p://dx.doi.org/10.1145/1370175.
1370213

[4] John Boyland. 2003. Checking Interference with Fractional Permis-
sions. In Proceedings of the 10th International Conference on Static
Analysis (SAS’03). Springer-Verlag, Berlin, Heidelberg, 55–72. h�p:
//dl.acm.org/citation.cfm?id=1760267.1760273

[5] Ethereum Foundation. 2018. Solidity. h�ps://solidity.readthedocs.io/
en/develop/. (2018). Accessed June 16, 2018.

[6] Kohei Honda, Vasco �udichum Vasconcelos, and Makoto Kubo.
1998. Language Primitives and Type Discipline for Structured
Communication-Based Programming. In Proceedings of the 7th Eu-
ropean Symposium on Programming: Programming Languages and
Systems (ESOP ’98). Springer-Verlag, London, UK, UK, 122–138. h�p:
//dl.acm.org/citation.cfm?id=645392.651876

[7] Marco Iansiti and Karim Lakhani. 2018. �e Truth About Blockchain.
h�ps://hbr.org/2017/01/the-truth-about-blockchain. (2018). Accessed
May 28, 2018.

[8] Joshua Sunshine, Karl Naden, Sven Stork, Jonathan Aldrich, and Éric
Tanter. 2011. First-class state change in Plaid. In ACM SIGPLANNotices.
ACM, 713–732.

[9] Bernardo Toninho, Luis Caires, and Frank Pfenning. 2013. Higher-
Order Processes, Functions, and Sessions: A Monadic Integration. In
Proceedings of the 22Nd European Conference on Programming Lan-
guages and Systems (ESOP’13). Springer-Verlag, Berlin, Heidelberg,
350–369. DOI:h�p://dx.doi.org/10.1007/978-3-642-37036-6 20

3

http://dx.doi.org/10.1145/1639950.1640073
http://dx.doi.org/10.1145/1370175.1370213
http://dx.doi.org/10.1145/1370175.1370213
http://dl.acm.org/citation.cfm?id=1760267.1760273
http://dl.acm.org/citation.cfm?id=1760267.1760273
https://solidity.readthedocs.io/en/develop/
https://solidity.readthedocs.io/en/develop/
http://dl.acm.org/citation.cfm?id=645392.651876
http://dl.acm.org/citation.cfm?id=645392.651876
https://hbr.org/2017/01/the-truth-about-blockchain
http://dx.doi.org/10.1007/978-3-642-37036-6_20

	1 Introduction
	2 Related Work
	3 Methodology
	4 Results
	5 Conclusion
	References

